Participant Questionnaires: Initial Analysis

Nigel Taylor
MBDA UK Ltd

1st AIAA Geometry & Mesh Generation & 3rd AIAA High Lift Prediction Workshops
Denver, 3-4 June 2017
The Questionnaire

• Consisted of 36 questions
• General themes addressed:
 • Tooling; Process Overview; Problems Encountered; Resource & Expertise Required
 • Intended to focus on those aspects that would not necessarily be identified via direct analysis of the meshes themselves
• Participants who generated meshes in both GMGW-1 and HLPW-3 were required to submit one completed questionnaire with each family of meshes
• In the event, 24 completed PQs were received
Questionnaires Received

• 19 Participants completed PQs
 (Some Participants submitted multiple PQs, others combined multiple responses onto a single PQ)
 • 18 for HL-CRM:
 3 Industrial Organisations; 4 Research Agencies;
 4 COTS vendors; 3 Universities
 • 3 for JSM:
 2 Industrial Organisations; 1 Research Agency
Responses: Geometry (1/3)

• Models Used

![Bar chart showing models used]

• NB:
 • No use of “native” NX model
 -> variety of inherited and mysterious problems
Responses: Geometry (2/3)

• Although diverse problems were encountered with the supplied models, none appeared to be “substantial”
 • All problems were resolved in <1hr
• Largest efforts were anticipated
 • … and may not be representative of “real-world” scenarios (i.e. may be accommodated by suitably tailored end-to-end local process)
• All Participants required some manual interaction to import the supplied models
 • Some required (or chose to make) further modifications subsequently
Responses: Geometry (3/3)

- Expertise Required:
Responses: Initial Meshing (1/3)

Surface Meshing

- Simplified surface meshing groupings (based on elapsed time):
 - “Quick” (<1hr or N/A)
 - N/A: Meshing tools that project volume mesh onto the surface
 - Processes incorporating extensive automation
 - <= ~1 day
 - Processes that require a reasonable amount of user input and/or iteration and incorporate varying degrees of automation to achieve an acceptable mesh
 - Longer (->2mwks)
 - (Remaining) Structured meshes and “slower” 1-day-ers
Responses: Initial Meshing (2/3)

Volume Meshing

- Simplified volume meshing groupings (based on elapsed time):
 - “Quick” (<1/2day)
 - Processes incorporating extensive automation or are reliant on extant information (e.g. Octree-based approaches)
 - <= 2-3 days
 - Processes that require a reasonable amount of user input and/or iteration and incorporate varying degrees of automation to achieve an acceptable mesh
 - Longer (>1wk)
 - Structured meshes
Responses: Initial Meshing (3/3)

Expertise Required:
Responses: Post Solution Modifications

• Not all Participants reported undertaking post-solution modifications
• Those reported included:
 • Structured meshes:
 • Modification of wake-sheet location and wake surface meshes [Multi-block]
 • Close proximity of hole boundary in far-field box mesh to OML discovered – and fixed [Overset]
 • High-order meshes:
 • Flow solver run to identify “hot-spots” in the solution; these were used to guide local mesh refinements
 • Adapted meshes:
 • Mesh adapted automatically (using Mach Hessian)
 • After 8th refinement, gap between trim curves on flap end > local mesh size
 • Repaired using “hybrid mesh/geometry” technique
 -> Only requirement for >Novice expertise
 • Adaptation process re-started two levels earlier
 (Cost: 30min Labour; 6Hrs CPU)
Responses: I/O

- Meshes were uploaded in the following formats:

- The following problems were noted in transferring meshes between tools and Workshop Participants:
 - CGNS: no single format-variant seemed to work with all tools
 - UGRID: boundary condition information could be lost (if downstream process loaded it via a separate text file)
Closing Remarks

• The submitted PQs include a wealth of information
 • Many Thanks to all of you who completed one!

• A diverse range of approaches was adopted by the Participants
• End-to-end (Receive Geometry -> Supply Mesh) process typically required:
 • Between a day-or-two and a couple of weeks
 • At least an Intermediate level of Expertise (at some stage)

• Analysis of the data continues – next report at SciTech
• When analysis is complete, it is intended that these data will be used as a benchmark by which to measure progress towards realising the 2030 Vision
Thank you for your attention